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ABSTRACT
This paper presents a computational approach to

developing design space models that are utilized to improve
the design process by predicting values of downstream design
attributes based on information available at early stages, such
as preliminary design specifications.  The predictive models
are similar in function, though not in form, to the internal
(mental) models created by experienced designers; however,
the advantages of these models are that it may be possible to
construct them in the absence of a designer’s internal models,
and that they can be passed on to and used by less experienced
designers.  Once created, the computational models aid
designers in exploration of design alternatives and to reduce
design costs and product development time.

1  INTRODUCTION
Experienced designers are often able to guide the design

process toward promising designs at preliminary stages by
predicting downstream design attributes using information
available early on in the process.  A designer may be able to
provide rough estimates of the expected cost, performance, or
efficiency of an artifact for a given set of specifications
without having to design and test the actual artifact.  These
estimates are used to improve exploration by allowing the
designer to focus on promising regions of the design space
while avoiding less favorable ones.

This foresight, which is often referred to in the context of
vague terms such as “intuition”, plays a significant role in
exploration of the design space.  One of the mechanisms that
enables designers to look ahead in this manner is the building
of internal (mental) models that map early design
specifications to downstream design attributes.  While training

in a particular domain of design is a prerequisite for this
capacity, it is usually not sufficient.  In general, that training
must be accompanied by extensive experience designing many
similar or related artifacts in the domain of interest.  What the
designer gains from experience is the ability to generalize
information obtained through design of many earlier artifacts.

There are a variety of barriers that deter the use of these
models in design practice.  One common obstacle is a lack of
expertise among designers who do not have adequate past
experience from which to build these models.  Because the
models are represented internally, rather than explicitly, it is
difficult for them to be articulated by expert designers and
passed on to less experienced ones.  A second difficulty is that
there are problems for which mappings from specifications to
design attributes may exist, but where those relationships are
too complex or multidimensional for a designer to be able to
capture.  Another barrier is that many designed artifacts span
across multiple engineering domains; in these cases, building
such a model may require more knowledge than a single
designer has.  Lastly, although the use of concurrent
engineering techniques is becoming more widespread, it is
still common in industry practice for designs to be “thrown
over the wall.”  Thus, while information about downstream
attributes may exist, the lack of feedback of this knowledge to
the designers makes it difficult for them to build these models.

The goal of this research is to improve the overall design
process by facilitating design space exploration using a novel
type of computational tool that represents and constructs
predictive models.  The purpose of these computational
predictive models is not to supplant any part of the design
process, but rather to provide designers with knowledge that



2 Copyright © 1996 by ASME

may not otherwise be available to them, and which can serve
to aid them in guiding search and improving designs.

The approach taken in this work is to use artificial neural
networks (ANNs) to build the computational predictive
models1.  An artificial neural network is able to represent a
potentially complex functional relationship by providing a
numerical output for a given set of inputs.  The ANN can
therefore be thought of as a response surface – a
representation of a function – which takes values for a variety
of preliminary or upstream design attributes as input, and
produces as output a predicted value for a downstream
attribute of interest.  Just as a designer needs experience to
build an internal model, experience in the form of knowledge
about classes of related designs is required to build the
computational models.  Thus, as will be discussed in greater
detail, the approach presented in this paper lends itself to
certain types of problems, such as routine or variant design
tasks, where such knowledge is available through legacy
information, design histories, or can be generated through
simulation or experimentation.

Once created, these models can be used much as a
designer would use an internal model – to provide rapid
estimates early on and use this information to help in
searching through the design space.  An advantage of the
computational models, however, is that it may be possible to
construct them in the absence of a designer’s internal models
which, as described above, can occur for a variety of reasons.
In addition, unlike the internal models, the computational
models are in a form in which they can be passed on to and
used by less experienced designers.

Early knowledge about downstream design attributes has
a variety of uses, regardless of whether the source of that
information be a designer’s internal model or a computational
model.  Potential benefits of this knowledge include
decreasing the number of design iterations, avoiding wasted
resources that occur by exploring paths that lead to infeasible
designs, and reducing the need for time-consuming analysis,
simulation or physical prototyping that might otherwise be
needed to obtain values for downstream attributes.  Because a
large percentage of lifecycle costs are committed at
preliminary design stages, improving the designer’s ability to
explore the design space early in the process can translate to
significant reductions in both design costs and product
development time.

The following section describes various areas of related
work that pertain to this research.  In Section 3 the technical
approach to building the predictive models is presented; the
design of a motor shaft is used as an example to illustrate
these models.  Section 4 contains a discussion of several issues
regarding the predictive models, and Section 5 presents
conclusions and addresses areas for future research.

                                                       
1 While ANNs have been selected for the predictive models in this work,

they are by no means the only available choice for a representation.  Alternative
representations and the motivation for using ANNs are discussed later in the
paper.

2  RELATED WORK
There have been a number of applications of artificial

neural networks to aid in the optimization portion of the
design process.  Liu and Gan (1991) use ANNs as components
in an expert system for design of space grid structures; Rogers
and Lamarsh (1992) describe an approach to reducing
computational costs for optimization of structures by replacing
a finite element analysis with an ANN; Berke et al. (1993) use
ANNs to optimize structural components for aerospace
applications.  In each of these applications, artificial neural
networks are used in conjunction with or as a substitute for
computationally expensive structural analyses2.  The approach
in this paper is intended to predict attribute values resulting
from a design process that may consist of several stages in
addition to an analysis step.  Mukherjee and Deshpande (1995)
present an approach to initial design process modeling using
ANNs as an alternative to rule-based expert systems for
structural design.

It should be noted that artificial neural networks are not a
unique representation for a response surface and that
alternative representations exist.  Other possible approaches
include Bayesian surrogate models (e.g. Osio and Amon,
1994; Yesilyurt et al., 1996), nonlinear regression and
discriminant models (e.g. Bates and Watts, 1988; Borowiak,
1989) and, when applicable, the more traditional polynomial
functional representations (e.g. Box and Draper, 1987; Myers,
1995). An in-depth comparison between the statistical
nonlinear regression and discriminant models and ANNs is
given in (Sarle, 1994).  Artificial neural networks and
polynomial approximations are compared in (Carpenter and
Barthelemy, 1993).

There is, in addition, some related work that does not use
ANNs for representation of a design space.  Chen et al. (1995)
propose a response surface-based approach to robust design
which addresses several drawbacks to Taguchi methods for
robust design.  Desa and Schmitz (1991) propose an iterative
design procedure called virtual concurrent engineering which
uses a knowledge-based expert system to predict downstream
producibility characteristics for part designs.

3  CONSTRUCTION OF PREDICTIVE MODELS
This section presents the approach to building predictive

models using artificial neural networks.  An overview of
ANNs is given in Section 3.1.  Section 3.2 illustrates the use
of the predictive models with an example (the design of a
motor shaft) and presents experimental results illustrating the
performance of a variety of predictive models that were
constructed for this problem.

3.1  Artificial Neural Networks
There are many different types of artificial neural

networks.  This section provides a summary of one kind of
ANN, called a backpropagation network, which is utilized in
this research.  Additional information can be found in

                                                       
2 In (Liu and Gan, 1991) separate ANN modules are also used to

evaluate results of analysis and to control an optimization.
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introductory texts on the subject such as (Rumelhart and
McClelland, 1986) and (Hertz et al., 1991).

Given a set of data where each data point consists of one
or more input values and one or more output values, an ANN
can be thought of as a response surface approximation to the
data.  Figure 1 shows an illustration of an artificial neural
network.  The network consists of three layers – an input layer
with two input units, a hidden layer with six hidden units and
an output layer with one output unit.  The hidden units are
called “hidden” because values for those units are not
specified in the data, whereas values for the input and output
units are.

The lines between units in the three layers are called
weights, and represent weighted connections from units in one
layer to those in the next.  Each of the units in the ANN
produces a numerical output for a given input.  The ANN
calculates a final output for a set of inputs to the network by
propagating the inputs through the network according to the
weight of the connections to produce a corresponding output
(these calculations are described in greater detail below).  The
task of building the approximation to the data, also referred to
as training the network, consists of finding a set of weights
that minimizes some measure of the error between the outputs
specified in the data set and those produced by the network.
Once an ANN has been trained using a data set, it can then be
used to calculate outputs for inputs that were not part of the
data set.  As with any function approximation, accuracy is
generally higher for interpolation than for extrapolation.

The numerical input to units in the ANN is referred to as
the activation.  The activation for a unit in the input layer is
supplied through the data which the network is trying to
represent.  The activation of each unit in the hidden and output
layers is equal to the sum of the outputs from units in the
previous layer multiplied by the weights from the preceding
layer to the current unit, plus a bias term.  The bias term is a
constant added to (non-input layer) units and may be different
for each unit.  The bias is implemented by having a unit that is
invisible to the user, with an output of 1.0 and with varying
weights for connections to all hidden and output units.  This
allows the bias for each unit to be calculated by changing the
weights using the same algorithm used for the rest of the
network.  To illustrate, the activation, Ahn, for the nth hidden

unit of the example network (shown in detailed view in Figure
2) is calculated as:

Ahn  =  Oi1Wi1,hn + Oi2Wi2,hn + (1.0)Wb,hn  (1)

where Oi1 and Oi2 are the outputs of input units 1 and 2, Wi1,hn

and Wi2,hn are the weights between the nth hidden unit and

input units 1 and 2, respectively, and Wb,hn is the weight from

the bias unit to that hidden unit.
The output for the units in the input layer is equal to their

activation, i.e., the values supplied by the data.  The outputs of

a unit in the hidden or output layer is a function of the unit’s
activation.  There are a variety of output functions that can be
used.  In this research, the output function used (shown in
Figure 3) is:

O(A)  = 0.0 if A < -n,
A+ n
2 n   if -n ≤ A ≤ n (2)

1.0 if A > n.

where A is the activation of the unit (calculated according to
equation (1)) and n is the number of weights from the previous
layer to the unit (n = 2 for the hidden units in Figure 1).

Before training the networks, the data is normalized so
that all inputs and outputs to the network fall between 0.0 and
1.0. This normalization has two advantages.  First, because no
unit has an output greater than 1.0, the activation for a unit in
the hidden or output layers is never greater than n, allowing
the same output function to be used for all (non-input layer)
units rather than using individual output functions for different
units or layers.  Second, the normalization improves
convergence because it tends to avoid network weights that
vary greatly in order of magnitude due to inputs or outputs
that differ by large amounts.  Using matrix representations for
the ANNs and the normalization scheme described above,
calculations can be done efficiently and rapidly.
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Figure 1. Example ANN Configuration
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Figure 3.  Output as a Function of Activation

The training of the ANN is done by initializing all
weights to random values between zero and one.  Then, three
steps are performed: (1) every set of inputs in the data set is

run through the network to obtain a set of outputs, (2) the error
between the predicted outputs and the true outputs is
calculated, and (3) the weights are modified.  One iteration of
this three-step procedure is called an epoch.  The network is
trained over many epochs by iteratively repeating the
procedure, each epoch resulting in modifications to weights
and ultimately converging to a set of weights that minimizes
the error between the outputs in the data set and the ones
produced by the network.  Many schemes have been proposed
to perform the optimization of weights, from gradient
approaches to simulated annealing to genetic algorithms.  The
algorithm used in this paper is called quickprop (Fahlman,
1988), which is a gradient-based approach that makes use of
information about the second derivative of the error to speed
up the optimization.

Load 1 Load 2

500 rpm

(24 in.) (48 in.)

60.96 cm 121.92 cm

Figure 4.  Shaft Design Problem

3.2  Example: Design of a Motor Shaft

3.2.1  Problem Description.   A design problem was
selected for which data that would be used to build the
predictive models could be generated by a simulation of the
design process.  The task is to design a shaft which is
connected to a motor and drives two belts, resulting in
torsional loads on the shaft specified as power drawn from the
shaft.  This arrangement is shown in Figure 4.

In this scenario, the motor drive is part of several similar
larger machines which are being designed for a variety of
related applications.  It is known that in all of the applications
being considered both loads will lie somewhere between 18.64
kW (25 hp) and 93.21 kW (125 hp).  However, because the
designs of the machines are at a preliminary stage, the values
for the loads are among the design specifications that have not
yet been fixed.  Despite this, the designer is interested in doing
some initial exploration of alternatives.  By predicting
downstream design attributes (in this case shaft material,
weight, stress and angle of twist) the designer can attempt to
anticipate needs for raw materials, to estimate costs for this
portion of the design, and possibly use that information to
provide feedback that will help find good values for the
undetermined load specifications at this early point in the
design of the larger machine.

The design process for the shaft involves three stages:
selection of the shaft material, analysis and optimization of the

inner and outer radii to minimize the shaft weight.  The design
constraints and specifications are as follows (relevant
equations are given in the appendix):
• the locations of the loads and the length of the shaft are

fixed as shown in Figure 4,
• the shaft is supported by bearings, so that there are no

bending loads,
• the motor runs at 600 rpm and can deliver the required

power P = load 1 + load 2,
• the ratio of yield stress to shear stress must exceed a factor

of safety of 1.5,
• the total angle of twist in the shaft, φ, may not exceed 5°,
• the outer radius of the shaft has a maximum of 2.54 cm

(1.0 in.),
• the wall thickness of the shaft (outer radius - inner radius)

must be at least 0.63 cm (0.25 in.).
There are three materials available to choose from:

Aluminum (2014-T6), structural steel (ASTM-A36) or a high-
strength steel (ASTM-A242).  In this simulated design
process, material selection is done using a simple rule base.
Aluminum is preferred over steel due to its light weight.
However, Aluminum has a much lower shear modulus which
results in larger angles of twist.  Accordingly, steel is chosen
over Aluminum if the angle of twist is too high for a given set
of loads.  Because of its higher cost, the high-strength steel is
only used if a loading is such that the shear stresses are
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unacceptably high using structural steel. After the material has
been selected using the rule base, the shaft is optimized for
weight, subject to the problem constraints described above,
using simulated annealing, a stochastic optimization technique
(Kirkpatrick et al., 1983) (the choice of simulated annealing
for the optimization is discussed in Section 4).

3.2.2  Experimental Results.   In order to construct the
predictive models, data were generated for the three-stage
design process described above.  Since the range for both
loads is 18.64 kW - 93.21 kW (25 hp - 125 hp), these were the
upper and lower bounds for the data.  Points were sampled
from 18.64 kW - 93.21 kW (25 hp - 125 hp) at 7.46 kW (10
hp) intervals in both variables, for a total of 121 data points;
these are referred to as the model data since they are used to
create the model.  For a predictive model to be useful, it must
not only be able to predict the data that were used to construct
it, but it should also be able to generalize by making
predictions for points that were not used to create it.  A second
set of data to be used for validation of the model was created
by sampling points from 22.37 kW - 89.48 kW (30 hp - 120
hp) at 7.46 kW (10 hp) intervals in both variables, for a total
of 100 data points; these are referred to as the test data.  The
grid of sampled points is shown in Figure 5, with the model
data set indicated by squares and the test data set indicated by
diamonds.

For each of final designs resulting from the design
process, the material, stress, angle of twist and optimized
weight were recorded.  Because of the optimization for
weight, for each of the designs either the stress or the angle of
twist is near or at its maximum allowable value.  This “critical
constraint” was also recorded for each of the designs.  This
gave a total of five design attributes and ten data sets (five
model data sets and five test data sets).

An artificial neural network was created for each of the
five design attributes.  Each of the ANNs had two input units
and ten hidden units.  This number of hidden units was
obtained empirically by creating several ANNs with varying
numbers of hidden units and examining errors in predictions
for each of them.  The ANN which predicted material had
three output units, one for each material (an output of 1,0,0
indicated Aluminum; 0,1,0 indicated structural steel; 0,0,1
indicated high-strength steel).  The network which predicted
the critical constraint had one output unit which had a value of
0 if the stress constraint was the critical constraint and 1 if
the angle of

18.64

33.57

48.49

63.41

78.33

93.21

18.64 33.57 48.49 63.41 78.33 93.21

Load 1 (kW)

Figure 5. Sampled Points for Shaft Design Problem
(Squares are Model Data,
Diamonds are Test Data)

twist constraint was the critical constraint.  The output units
for both of these networks had output functions that forced a
binary 0-1 output.  The other three networks had one output
unit which used the output function shown in Figure 2 and
produced a (normalized) numerical output.

The ANNs were trained using the model data sets for
8000 epochs.  Training took on average less than a minute per
thousand epochs on a Sun SparcStation 23.  After the
predictive models were created, they were tested on both the
model data sets and the test data sets.  Good performance on
the model data demonstrates that the model was able to
approximate the data.  However, good performance on the
model data does not necessarily prove that the model is a good
one because it is possible that the data does not adequately
represent the design space.  As mentioned earlier, the test data
sets are used to validate the models.  Since the test data were
not used to create the models, good performance on the test
data implies that the models characterize the design space and
are able to make predictions that generalize beyond the data
used to create them.

Table 1 summarizes the results of testing the predictive
models giving average percentage error on both sets of data
for each of the five models.  The observation that errors on the
test data sets did not differ greatly from the model data sets
indicates that the models were able to generalize well enough
to make predictions for points that were not used to construct
them.  Had the models only characterized the model data sets
without abstracting out more general features of the design
space, predictions for the test data sets would have been much
worse.  The average percentage errors range from 4% to less
than 6%; this accuracy is quite good considering that the range

                                                       
3 This information is given in order to provide an indication of

computational requirements and does not constitute an endorsement of any
hardware by the National Institute of Standards and Technology.
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of loads over which the models make predictions varies by an
order of magnitude, and given that the data included several
shaft materials and constraints.  Furthermore, perfect accuracy
would not be expected since the data in both sets contains
noise due to the use of simulated annealing which often
converges to near-optimal rather than optimal solutions
(simulated annealing was used for optimization to
intentionally introduce variation in the data in order to test the
ability of the ANNs to tolerate noise).

Interestingly, the models for material and critical
constraint were able to make predictions with 100% accuracy.
This indicates that the design space for these attributes was
well characterized by the model over the given range of input
loads.  Thus, the designer can use the predictive model for
material with high confidence and quickly get predictions for
the best material to use based on shaft loads without
performing an analysis.  The other models, which have some
error, are still useful since even rough estimates of
downstream design attributes can be utilized to guide the
designer at preliminary stages of the design process.

The models can also be used to determine which regions
of the design space are problematic for predictions.  A
subsequent experiment showed that using the same predictive
model for weight, average percentage errors on the test data
dropped to 4.6% if predictions were made for points where
neither load was greater than 74.57 kW (100 hp).  This may
indicate that the high-load region of the design space is more
complex and either additional data or a larger ANN is required
to adequately characterize it.

4  DISCUSSION
It is perhaps intuitively obvious that a completely

accurate predictive model is usually, if not always, impossible
to obtain.  If one likens the generation of these computational
models to fitting a function or response surface to a set of

data, there are a number of reasons that the model may not be
perfect.  One potential reason is an inadequate functional
representation for the target function, such as using a quadratic
function when the target function is a higher order polynomial
or a discontinuous function.  A second problem may be an
inadequate technique for constructing the model, that is,
creating the model to fit the given data.  With some functional
representations (least squares, for example) it is relatively
simple to create a model that best fits a given data set; with
other representations (including ANNs) finding the best fit for
a set of data is not as straightforward and multiple approaches
may be taken.

A variety of additional difficulties can arise from the data
themselves.  These include insufficient data, statistical
variation in the data, and random variation (or noise) in the
data.  If there are insufficient data, it may not be possible to
adequately capture the characteristics of the design space even
if the functional form and the construction technique are
suitable for the problem.  If there is statistical variation in the
data, the true function value f(x) for an input vector x is not
known, possibly introducing errors in predicted values.
Random variation can cause similar problems but because it
cannot be recognized as readily and is less predictable than
statistical variation, it is more difficult to deal with.
Furthermore, if a model is created to correctly fit noisy data, it
is likely that it will not predict true (non-noisy) values as
accurately.

Many of the potential difficulties described above are
typical of data that occurs in real engineering problems.
Engineering data often cannot be approximated using simple
low-order polynomial functions.  Discontinuities in design
spaces are common, due to various types of constraints that
dictate what is and is not permissible.  Engineering
data

Table 1.  Average Percentage Error in Model Predictions for Model and Test Data Sets

Material Stress Angle of Twist Weight Critical Constraint
Model data 0.0 4.6% 4.0% 5.8% 0.0
Test data 0.0 5.1% 3.6% 5.4% 0.0

generally contain statistical and random variation, occurring
both in the artifact and in the measurement of design or
performance attributes of interest.  While these problems do
pose barriers to obtaining models with perfect accuracy, it is
not necessary to have errorless predictions in order to benefit
from the use of these models.

As noted previously, artificial neural networks are not a
unique representation for this type of predictive model.  ANNs
were chosen as a representation in this research because of
their ability to deal with the characteristics described above.
In particular, ANNs do not presuppose any particular
functional form, they can represent relationships of high
dimensionality, they can approximate discontinuities, and they
are tolerant of statistical or random variation in data, tending

to exhibit an averaging effect that smoothes out local
variations in a response surface.

The shaft design problem exhibited several of these
properties: noise was introduced in the data by the simulated
annealing optimization and constraints that caused changes in
materials led to discontinuities in the design space.  Despite
these obstacles, the ANNs were able to represent models that
predicted downstream attributes including weight, stress,
angle of twist, and material to within a few percent accuracy
without assumptions about the functional form for any
equations.

The appendix contains equations used to calculate torque
as a function of an input load, and maximum stress and angle
of twist a function of torque.  However, the response surface
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represented by the predictive models is far more useful than
approximations to these functions would be because additional
problem-specific knowledge is inherent in the predictive
models that is absent from those equations.  For instance, the
predictive models account for the constraints on maximum
stress and angle of twist so that a prediction for a small total
load corresponds to the weight/stress/twist for an Aluminum
shaft with one set of material properties, whereas a prediction
for a large total load corresponds to a weight/stress/twist of a
steel shaft with different material properties.  The predictive
model for angle of twist captures the fact that the design space
is not symmetric with respect to loads; that is, the angle of
twist for load 1 = X and load 2 = Y is not the same as the
angle of twist for load 1 = Y and load 2 = X if X and Y are
different (see equation (6) in the appendix).  Also inherent in
the model is additional information regarding the factor of
safety and constraints on shaft geometry.  Furthermore, the
models are not simply predicting the results of an analysis, but
of a three-stage design process consisting of material
selection, analysis and optimization.

More importantly, the problem-specific information is
incorporated in the predictive model implicitly, rather than
explicitly.  No prior knowledge about the form of the
equations used was necessary, nor was information about the
types of constraints or the variables they involve required in
order to capture their effects on the design problem.  This is of
critical importance since applications of prime interest for the
predictive models are to use data from previously designed
artifacts to build models that can aid engineers in designing
subsequent related artifacts.  While data regarding
downstream design and performance attributes may exist in
the form of legacy information or design histories, in many of
these cases complete knowledge about the constraints that
impacted the design may not be available.  Unlike the problem
used as the example in this paper, in many engineering
applications closed-form equations are not available.

As problems become more complex and the number of
design specifications increases, the approach is the same as
that used for the shaft design example.  Say, for instance, that
the designer wished to explore designs for shafts made from a
variety of different materials to determine how they affect
final designs.  Whereas the material was a predicted
downstream attribute in the shaft design scenario above, in
this case the material would be considered an upstream
attribute or specification.  First, data would be obtained for a
variety of different material properties.  Next, just as the
models in Section 3 were constructed to make predictions
using values for the two loads as model inputs, in this case
predictive models would predict downstream attributes also
using material properties as additional inputs.  This new model
could be used to help make ensuing decisions regarding initial
material selection.

In the shaft design example, the attributes that were
predicted (weight, stress, angle of twist, material and critical
constraint) were obtained through a simulation of the design
process that consisted of material selection, analysis and

optimization.  However, models can be created to predict
other attributes (e.g. design feasibility for a given set of
specifications, downstream design costs or other performance
characteristics) which result from a more complex design
process consisting of a greater number of stages and design
decisions.

5  CONCLUSIONS
This paper has presented an approach to developing

computational predictive models, a new type of tool for
improving the design process by predicting values of
downstream design attributes based on information available
at early stages in the process.  Experienced designers make
use of internal (mental) models to help guide the design
process.  The purpose of this research is to develop a
computational method for creating predictive models since
there are a number of barriers to the use of internal models in
design practice. These models can be used by the designer to
aid in exploration of design alternatives and to reduce design
costs and product development time by reducing design
iterations, avoiding wasted resources from exploring infeasible
design paths, and reducing the need for simulation or physical
prototyping.

In addition to the uses described above, the predictive
models have a variety of other applications.  A model can be
used to perform parametric studies to determine the effect of
changes in design specifications on downstream design
attributes.  This can help in achieving robust design, in which
a designer attempts to find regions of the design space where
performance attributes are insensitive to variations in design
specifications.  Models can be incorporated into design
optimization codes not only to predict downstream
performance or costs, but to optimize preliminary
specifications as well.  Returning to the shaft design problem
as an example, recall that the design specifications (the two
loads) were not fixed at early stages of the design; the
designer can use the predictive models to find optimal input
loads – where “optimal” is some measure of goodness, such as
torsional stiffness to cost ratio – and propose these values as
specifications during initial design reviews.

In order to build models that map specifications to
downstream attributes, data corresponding to groups of related
designs is required.  Thus, the proposed methodology lends
itself to problems where classes of similar artifacts have been
previously designed (such as routine or variant design tasks),
or problems where such data can be generated through
simulation or experimentation.  Very few artifacts that are
designed begin from a clean sheet of paper; most are
variations on or improvements to existing designs where
information about earlier artifacts is often available in one
form or another.  Consequently, while the need for data does
limit the applicability of the predictive models, it does not
detract from their potential utility in many industry
applications.

One important question that must be addressed is how
much data are needed to build useful models? It is expected
that the amount of data required will increase as the number of
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inputs to a model increases (analogous to introducing more
variables in a design problem) and as the complexity of the
design task increases (analogous to having a more complex
function to approximate).  Obtaining a more quantitative
measure of data needs is an important area of future
investigation.

A related issue is the level of accuracy that can be
achieved with the predictive models.  Because they are only
approximations to a complex design space, as well as for
reasons presented in the discussion section, perfect accuracy is
unlikely.  Although initial results presented in this paper
demonstrate good accuracy, expected accuracy for larger
problems remains to be obtained empirically through further
applications of this methodology.  Since the predictive models
are intended to be used at early stages of the design process,
perfect accuracy is not necessary; even approximate estimates
of downstream effects of upstream design decisions can be
extremely helpful in guiding the search through a design space
in the same manner in which experienced designers are able to
make use of rough estimates generated by their internal
models.

When only limited data are available, it is desirable to
determine whether or not a useful model can be constructed.
In instances where it is possible to generate data through
simulation or experimentation, obtaining this data may incur
significant costs.  Knowing how much data are required can
give an indication of the cost associated with building
predictive models.  In these cases, costs can be reduced by
generating a greater amount of data for the more critical
parameters and less data for parameters that have a smaller
effect on downstream attributes.  Design-of-experiments
techniques may be a useful tool in determining the relative
importance of the various parameters as well as for selection
of points to sample for data.

Current efforts are directed toward developing a prototype
tool that can be applied to an industry design problem.  One
advantage of this approach is that problem-specific
information is modeled implicitly; no a priori knowledge
about types of design constraints, the nature or functional form
of the design space, or the domain of design, is required.
However, it may be possible to use these predictive models
more effectively by using them in conjunction with
approaches that include such knowledge.  The ability to make
use of problem-specific knowledge when it is available is an
area long term future work.  Other long term research issues
include determination of the scope of applicability of the
predictive models and characterization of the classes of design
problems for which they can and cannot be constructed.
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APPENDIX
This appendix summarizes the equations used for analysis

in the shaft design problem presented in this paper (see Figure
4).  The torque due to each load is:

T  = 
58,400 P

2 π n
N−m

(3)

where P is the power in kW and n is the angular velocity of
the shaft in rpm.

The maximum shear stress in the shaft is:

τmax  =  
Tmax ro

J (4)

where Tmax is the maximum torque (for this problem the sum

of the torques T1 + T2 due to the two loads), ro  is the outer

shaft radius, and J is the polar moment of inertia given by:

J  = 
π (ro

4 −ri
4)

2 (5)

where ri is the inner shaft radius.

The angle of twist due to the torque in the shaft is given
by:

φ  = 
T l
G J (6)

where l is the length of the shaft and G is the shear
modulus.  Note that for this problem, the angle of twist is the

sum of the angle of twist in the first shaft segment (between
the motor and load 1), having T = T1 + T2  and l = 60.96 cm

(24 in.), and the second shaft segment having T = T2 and l =

121.92 cm (48 in.) (see Figure 4).


